

SWING CHECK VALVE * WAFER TYPE * SINGLE DISC

ASME CLASS 125/150 * DUCTILE IRON

MODEL: CV 31-DI

Body: Ductile Iron

Seat: Buna-N

Disc: Stainless Steel

NEWLY DESIGNED... Face to face meets API 594.

FEATURES

SIZES: 2" ~ 12"

♦ ECONOMICAL DESIGN

LOW WEIGHT AND SHORT LAYING LENGTH PRODUCE SAVINGS IN INITIAL COST, SPACE REQUIREMENTS, AND INSTALLATION WHEN COMPARED TO FULL-BODY, SWING-TYPE CHECK VALVES.

♦ MINIMAL HEAD LOSS

HEAD LOSS IS MINIMIZED BY PROVIDING A SHORT, STRAIGHT AND VIRTUALLY UNOBSTRUCTED FLOW PATH. ADDITIONALLY, THE SPRING-LOADED DISC IS DESIGNED WITH VERY LOW CRACKING PRESSURE WHICH REDUCES THE AMOUNT OF ENERGY REQUIRED TO OPEN THE VALVE.

♦ QUICK CLOSURE TO REDUCE WATER HAMMER

SHUT-OFF IS ACHIEVED VIA THE FULLY AUTOMATIC, SPRING-ASSISTED DISC THAT CLOSES NEAR ZERO FLOW VELOCITY. THE LIGHTWEIGHT, SINGLE DISC DESIGN CREATES A POSITIVE SHUTOFF PRIOR TO FLOW REVERSAL WHICH HELPS TO KEEP SURGES TO A MINIMUM.

♦ DURABLE, HIGH QUALITY DESIGN

THE CV31'S DUCTILE IRON BODY MAINTAINS THE ANTI-CORROSIVE PROPERTIES OF CAST IRON WHILE ACHIEVING A YIELD STRENGTH COMPARABLE TO CARBON STEEL. DUCTILE IRON ALSO OFFERS HIGHER PRESSURE/TEMPERATURE RATINGS THAN CAST IRON IN THE SAME PRESSURE CLASS. THE CV31 ALSO FEATURES ANTI-CORROSIVE, STAINLESS STEEL TRIM (DISC, SPRING, SHAFT) AS STANDARD.

♦ RESILIENT SOFT SEATS

FIELD REPLACEABLE, RESILIENT SOFT SEATS (BUNA-N O-RING) COUPLED WITH PRECISION MACHINED SEALING SURFACES HELP TO ENSURE A BUBBLE TIGHT SEAL THAT MEETS OR EXCEEDS API 598 TEST REQUIREMENTS.

TECHNICAL

PRESSURE/TEMPERATURE RATING DI - ASTM A536 - CLASS 150 (1)

WOG (Non-shock): 250 PSI @ 100 °F

SEAT MATERIAL TEMPERATURE RANGE

BUNA-N: -20 ~ 250 °F

SPRING MATERIAL MAXIMUM TEMPERATURE

Series 300 Stainless Steel: 450 °F

- Ductile Iron valves offer higher pressure ratings than Cast Iron. valves For example, Ductile Iron valves (2" ~ 24") are rated at 250 psi wog. By comparison, Cast Iron valves (2" ~ 12") are rated at 200 psi wog and (14" ~ 24") are only rated at 150 psi wog.
- 2. The above listed temperatures are theoretical and may vary during actual operating conditions.
- Max and min temperatures are for reference only.
 Prolonged use at these temperatures is not recommended for optimal service life.

MARKETS: GENERAL INDUSTRY, CHEMICAL, PETROCHEMICAL, POWER, AND FOOD & BEVERAGE

SERVICE: INTENDED FOR LIQUID SERVICE THAT IS STEADY, CLEAN (NO ABRASIVES OR SOLIDS) AND NON-PULSATING. FLOW RATE SHOULD NOT EXCEED 15 FT/SEC. NOT RECOMMENDED FOR STEAM OR RECIPROCATING COMPRESSOR SERVICE.

BUNA-N PROPERTIES: MOST WIDELY USED ELASTOMER. GOOD FOR MOST PETROLEUM OILS AND FLUIDS, SILICONE GREASES AND OILS, AND COLD WATER. EXCELLENT COMPRESSION SET, TEAR, AND ABRASION RESISTANCE. POOR WEATHER RESISTANCE AND MODERATE HEAT RESISTANCE. NOT RECOMMENDED FOR SEVERE OZONE-RESISTANT APPLICATIONS.

The above data represents common market and service applications. No representation or guarantee, expressed or implied, is given due to the numerous variations of concentrations, temperatures and flow conditions that may occur during actual service.

TITAN® FLOW CONTROL, INC.

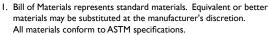
YOUR PIPELINE TO THE FUTURE!

Tel: 910-735-0000 ♦ Fax: 910-738-3848 ♦ titan@titanfci.com ♦ www.titanfci.com 290 Corporate Drive ♦ PO Box 7408 ♦ Lumberton, NC 28358

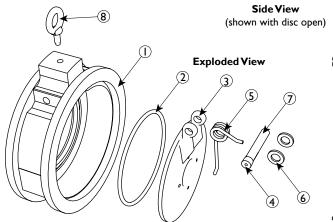
PPLICATIONS

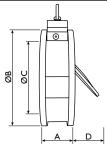
TITAN® FLOW CONTROL, Inc.

290 Corporate Drive Lumberton, NC 28358 Tel: 910.735.0000 E-mail: titan@titanfci.com Web: www.titanfci.com Fax: 910.738.3848


SWING CHECK VALVE • WAFER TYPE • SINGLE DISC

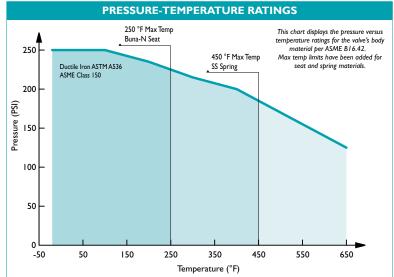
MODEL: CV 31-DI (Ductile Iron Body)


Buna-N Seat • Stainless Steel Disc


ASME Class 125/150

	BILL OF MATERIALS (1)				
No.	PART	CV 31-DI			
ı	Body	Ductile Iron ASTM A536			
2	Seat	Buna-N O-Ring			
3	Disc (2)	Stainless Steel AISI 316			
4	Plug	Carbon Steel ASTM A307B			
5	Spring (2)	Series 300 Stainless Steel			
6	Spacer	PTFE Commercial			
7	Shaft	Stainless Steel AISI 316			
8	Eye Bolt	Carbon Steel ASTM A307B			

2. Denotes recommended spare parts.



Illustrations are representative of the CV 31-DI. Please request certified drawings when required.

			DIMENSION	NS AND PER	RFORMANC	E DATA (I)				
SIZE	in	2	2 1/2	3	4	5	6	8	10	12
SIZE	mm	50	65	80	100	125	150	200	250	300
A DIMENSION	in	2.12(4)	2.38(4)	2.62(4)	2.62(4)	3.25(4)	3.75(4)	5.0(4)	5.5 ⁽⁴⁾	7.12(4)
FACE TO FACE (2)	mm	54	61	67	67	83	95	127	140	181
ØB DIMENSION	in	4.00	4.88	5.25	6.88	7.75	8.75	11.00	13.38	16.13
OVERALL DIAMETER	mm	102	124	133	175	197	223	280	340	410
ØC DIMENSION	in	1.31	1.85	2.06	3.00	3.75	4.75	6.44	7.63	9.50
INLET DIAMETER	mm	34	47	53	77	96	121	164	194	242
D DIMENSION	in	0.75	1.00	0.80	1.87	3.30	2.70	3.00	4.62	4.00
DISC MAX TRAVEL	mm	19	25.5	20.3	47.5	83.8	68.6	76	117	102
ASSEMBLED	lb	4.25	7.25	8.75	13.25	18.5	32	50	80	126
WEIGHT	kg	1.9	3.3	4	6	8.4	14.5	22.7	36.2	57.1
Flow Coefficient	C _V	62	109	166	318	471	720	1384	2298	4153
Cracking Pressure (3)	psi	≤ .25	≤ .25	≤ .25	≤ .25	≤ .25	≤ .25	≤ .25	≤ .25	≤ .25

- 1. Dimensions, weights, and flow coefficients are for reference only. When required, request certified drawings.
- 2. Face to face values have a tolerance of ± 0.06 in (± 2.0 mm) for sizes 10" and lower and a tolerance of $\pm 0.1\overline{2}$ in (± 3.0 mm) for sizes 12" and larger.
- 3. Cracking pressure is for horizontal installations only. For vertical installations, please consult factory.
- 4. Face to face dimensions per API 594 Class 125.

Ductile Iron Application Notes: Ductile Iron maintains the anti-corrosive properties of Cast Iron while achieving a yield strength comparable to Carbon Steel. Ductile Iron also offers higher pressure/ temperature ratings than Cast Iron. For example, Ductile Iron check valves (class 150 - sizes $2" \sim 24"$) are rated at 250 psi wog. By comparison, Cast Iron check valves (class 125 - sizes $2" \sim 12"$) are rated at 200 psi wog and (sizes $14" \sim 24"$) are only rated at 150 psi wog. Ductile Iron ASME Classes 150 has the same bolting pattern as Cast Iron ASME Class 125.

REFERENCED STANDARDS & CODES				
CODE	DESCRIPTION			
ASME B16.42	Ductile Iron Pipe Flanges and Flanged Fittings			
ASME B16.5	Pipe Flanges & Flanged Fittings			
API 594	Wafer, Wafer-Lug, & Double Flanged Type Check Valve			
API 598	Valve Inspection and Testing			
MSS SP-6	Standard Finishes for Connecting-end Flanges			
MSS SP-25	Standard Marking System for Valves			
MSS SP-55	Quality Standard for Valve Castings			

Ductile Iron A536 Class 150					
250 PSI @ 100 °F					
SEAT AND SPRING TEMPERATURE RATINGS (1)					
Temperature Range					
-20 °F @ 250 °F					
Maximum Temperature					

PRESSURE/TEMPERATURE RATING (1)

 The listed pressure and temperature ratings for the valve's body, seat, and spring are theoretical and may vary during actual operating conditions.

Series 300 Stainless Steel

Max and min temperatures are for reference only. Prolonged use at these temperatures is not recommended for optimal service life.

450 °F

As †Titan product changes occur, there may be short-term differences between actual product specifications and the information contained within our literature. †Titan FCI reserves the right to make design and specification changes to improve our products without prior notification. When required, request certified drawings. †TITAN is a registered trademark of Titan Flow Control Incorporated.