MODEL: CV 88T-SS
(STAINLESS STEEL - THREADED)
CV 88S-SS
(STAINLESS STEEL - SOCKET WELD)

FEATURES

SIMPLE DESIGN
The all stainless-steel body coupled with a simplified design (only three parts) helps to eliminate possible failure points. The need for O-rings or gasket seals is not needed.

MINIMAL HEAD LOSS
The contour of body provides a short and straight flow path that generates very little turbulence. Additionally, the spring-loaded, disc is designed with very low cracking pressure which reduces the amount of energy required to open the valve.

QUICK CLOSURE TO REDUCE WATER HAMMER
Shut-off is achieved via the fully automatic, spring assisted disc that closes near zero flow velocity. The lightweight, floating disc design creates a positive shutoff prior to flow reversal and helps to keep slamming and surges to a minimum.

DESIGNED FOR LONG SERVICE LIFE
The CV88-SS utilizes a highly reliable investment casting and welded stainless steel construction that can provide a long service life for a wide variety of applications.

VERSATILE AND ECONOMICAL DESIGN
The CV88-SS can be installed in any position (horizontal or vertical with upward flow) - consult factory for vertical with downward flow. Hex ends are provided for quick and easy installations.

MARKETS: GENERAL INDUSTRY, CHEMICAL INDUSTRY, PETROCHEMICAL INDUSTRY, POWER, FOOD & BEVERAGE INDUSTRIES.

SERVICE: CHEMICAL / STEAM / NITROGEN LINES, GAS INJECTION, CONDENSATE RECOVERY, PUMP & COMPRESSOR DISCHARGE, PUMP JACK FLOW LINES, CHILLER & BOILER FEED

ICONEL PROPERTIES: X-750 is a precipitation-hardenable alloy which has been used in applications such as high temperature structural members for gas turbines, jet engine parts, heat-treating fixtures, forming tools, and extrusion dies.

APPLICATIONS:

PRESSURE/TEMPERATURE RATING
SS - ASTM A351 GR. CF8M - CLASS 300
WOG (Non-shock): 720 PSI @ 100 °F
Max Liquid: 435 PSI @ 700 °F
Max Steam: 480 PSI @ 500 °F

SEAT MATERIAL
TEMPERATURE RANGE
Stainless Steel: -325 °F to 1000 °F

SPRING MATERIAL
MAXIMUM TEMPERATURE
Inconel X-750: 1000 °F

1. The above listed temperatures are theoretical and may vary during actual operating conditions.
2. Max and min temperatures are for reference only. Prolonged use at these temperatures is not recommended for optimal service life.

The above data represents common market and service applications. No representation or guarantee, expressed or implied, is given due to the numerous variations of concentrations, temperatures and flow conditions that may occur during actual service.
IN-LINE • SINGLE DISC CHECK VALVE
THREADED ENDS • SOCKET WELD ENDS

MODEL: CV 88T-SS Stainless Steel Body • Seat
MODEL: CV 88S-SS Stainless Steel Body • Seat

BILL OF MATERIALS (1)

<table>
<thead>
<tr>
<th>No.</th>
<th>PART</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BODY</td>
<td>ASTM A351 CF8M Stainless Steel</td>
</tr>
<tr>
<td>2</td>
<td>DISC</td>
<td>ASTM A351 CF8M Stainless Steel</td>
</tr>
<tr>
<td>6</td>
<td>SPRING</td>
<td>Inconel X-750</td>
</tr>
</tbody>
</table>

Notes:
1. Bill of Materials represents standard materials. Equivalent materials may be substituted at the manufacturer’s discretion.

DIMENSIONS AND PERFORMANCE DATA (1)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>in</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>32</td>
<td>40</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>A DIMENSION</td>
<td>FACE TO FACE</td>
<td>2.69</td>
<td>3.00</td>
<td>3.32</td>
<td>3.81</td>
<td>4.75</td>
<td>5.03</td>
<td>6.87</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>68</td>
<td>76</td>
<td>84</td>
<td>97</td>
<td>121</td>
<td>128</td>
<td>175</td>
</tr>
<tr>
<td>ØB DIMENSION</td>
<td>BODY DIAMETER</td>
<td>1.62</td>
<td>2.12</td>
<td>2.56</td>
<td>3.06</td>
<td>3.44</td>
<td>4.38</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>41</td>
<td>54</td>
<td>65</td>
<td>78</td>
<td>111</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLED WEIGHT</td>
<td></td>
<td>1.0</td>
<td>1.5</td>
<td>2.3</td>
<td>3.5</td>
<td>5.3</td>
<td>8.5</td>
<td>21.0</td>
</tr>
<tr>
<td>Flow Coefficient</td>
<td>CV</td>
<td>7</td>
<td>13</td>
<td>22</td>
<td>39</td>
<td>54</td>
<td>93</td>
<td>180</td>
</tr>
<tr>
<td>Cracking Pressure (3)</td>
<td>psi</td>
<td>≤ 0.25</td>
</tr>
</tbody>
</table>

1. Dimensions, weights, and flow coefficients are provided for reference only. When required, always request certified drawings.
2. The listed valve cracking pressure only applies to horizontal installations. For vertical installations, cracking pressure is higher. Please consult factory.
3. Available with 5 PSI cracking pressure. Please consult factory.

PRESSURE TEMPERATURE RATING

Body Material - ASTM A351 GR. CF8M - CLASS 300

WOG (Non-shock): 720 PSI @ 100 °F
Max Liquid: 435 PSI @ 700 °F
Max Steam: 480 PSI @ 500 °F

PRESSURE TEMPERATURE RATING

Stainless Steel - 325 °F - 1000 °F

SPRING TEMPERATURE RATING

Seal Material: 1000 °F

Referenced Standards & Codes

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B1.1</td>
<td>Unified Inch Screw Threads</td>
</tr>
<tr>
<td>ASME B1.20.1</td>
<td>Pipe Threads - General Purpose</td>
</tr>
<tr>
<td>ASME B16.34</td>
<td>Valves - Flanged, Threaded & Welding Ends</td>
</tr>
<tr>
<td>ASTM A351 GR CF8M</td>
<td>Austenitic Steel Castings</td>
</tr>
</tbody>
</table>

1. Bill of Materials represents standard materials. Equivalent materials may be substituted at the manufacturer’s discretion.
2. Dimensions, weights, and flow coefficients are provided for reference only. When required, always request certified drawings.
3. Available with 5 PSI cracking pressure. Please consult factory.

Design Notes:
1. Size range: 1/2” ~ 3”
2. ASME Class 300
3. Low cracking pressure
4. Minimal head loss
5. Low pressure drop
6. Spring assisted design
7. Metal Seat for long service life

Pressures vs. Temperature & Flow Coefficient

1. The above chart displays the pressure-temperature ratings for the valve’s body material per ASME B16.34 - latest edition. For reference, maximum temperature limits have been added for spring materials. Stainless Steel not recommended for prolonged use above 1000 °F

1. The above chart displays the pressure-temperature ratings for the valve’s body material per ASME B16.34 - latest edition. For reference, maximum temperature limits have been added for spring materials. Stainless Steel not recommended for prolonged use above 1000 °F

1. The above chart displays the pressure-temperature ratings for the valve’s body material per ASME B16.34 - latest edition. For reference, maximum temperature limits have been added for spring materials. Stainless Steel not recommended for prolonged use above 1000 °F

1. The above chart displays the pressure-temperature ratings for the valve’s body material per ASME B16.34 - latest edition. For reference, maximum temperature limits have been added for spring materials. Stainless Steel not recommended for prolonged use above 1000 °F

1. Max and min temperatures are for reference only. Prolonged use at these temperatures is not recommended for optimal service life.