MODEL: CV 31-DI
Body: Ductile Iron
Seat: Buna-N
Disc: Stainless Steel

FEATURES

- **ECONOMICAL DESIGN**
 Low weight and short laying length produce savings in initial cost, space requirements, and installation when compared to full-body, swing-type check valves.

- **MINIMAL HEAD LOSS**
 Head loss is minimized by providing a short, straight and virtually unobstructed flow path. Additionally, the spring-loaded disc is designed with very low cracking pressure which reduces the amount of energy required to open the valve.

- **QUICK CLOSURE TO REDUCE WATER HAMMER**
 Shut-off is achieved via the fully automatic, spring-assisted disc that closes near zero flow velocity. The lightweight, single disc design creates a positive shut-off prior to flow reversal which helps to keep surges to a minimum.

- **DURABLE, HIGH QUALITY DESIGN**
 The CV31's ductile iron body maintains the anti-corrosive properties of cast iron while achieving a yield strength comparable to carbon steel. Ductile iron also offers higher pressure/temperature ratings than cast iron in the same pressure class. The CV31 also features anti-corrosive, stainless steel trim (disc, spring, shaft) as standard.

- **RESILIENT SOFT SEATS**
 Field replaceable, resilient soft seats (Buna-N O-Ring) coupled with precision machined sealing surfaces help to ensure a bubble tight seal that meets or exceeds API 598 test requirements.

- **MARKETS:** General Industry, Chemical, Petrochemical, Power, and Food & Beverage

- **SERVICE:** Intended for liquid service that is steady, clean (no abrasives or solids) and non-pulsating. Flow rate should not exceed 15 ft/sec. Not recommended for steam or reciprocating compressor service.

- **BUNA-N PROPERTIES:** Most widely used elastomer. Good for most petroleum oils and fluids, silicone greases and oils, and cold water. Excellent compression set, tear, and abrasion resistance. Poor weather resistance and moderate heat resistance. Not recommended for severe ozone-resistant applications.

The above data represents common market and service applications. No representation or guarantee, expressed or implied, is given due to the numerous variations of concentrations, temperatures and flow conditions that may occur during actual service.

APPLICATIONS

<table>
<thead>
<tr>
<th>PRESSURE/TEMPERATURE RATING DI - ASTM A536 - CLASS 150 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOG (Non-shock): 250 PSI @ 100 °F</td>
</tr>
</tbody>
</table>

SEAT MATERIAL TEMPERATURE RANGE

- **BUNA-N:** -20 ~ 250 °F

SPRING MATERIAL MAXIMUM TEMPERATURE

- **Series 300 Stainless Steel:** 450 °F

1. Ductile Iron valves offer higher pressure ratings than Cast Iron valves. For example, Ductile Iron valves (2" ~ 24") are rated at 250 psi wog. By comparison, Cast Iron valves (2" ~ 12") are rated at 200 psi wog and (14" ~ 24") are only rated at 150 psi wog.
Ductile Iron Application Notes: Ductile Iron maintains the anti-corrosive properties of Cast Iron while achieving a yield strength comparable to Carbon Steel. Ductile Iron also offers higher pressure/temperature ratings than Cast Iron. For example, Ductile Iron check valves (class 150 - sizes 2” ~ 24”) are rated at 250 psi wog. By comparison, Cast Iron check valves (class 125 - sizes 2” ~ 12”) are rated at 200 psi wog and (sizes 14” ~ 24”) are only rated at 150 psi wog. Ductile Iron ANSI Classes 150 has the same bolting pattern as Cast Iron ANSI Class 125.

Titan FCI makes every effort to ensure the information presented on our literature accurately reflects exact product specifications. However, as product changes occur, there may be short-term differences between actual product specifications and the information contained within our literature. Titan FCI reserves the right to make design and specification changes to improve our products without prior notification. When required, request certified drawings.