FEATURES

- **DESIGNED FOR LONG SERVICE LIFE**
 Ductile iron body maintains the anti-corrosive properties of cast iron while achieving a yield strength comparable to carbon steel. Ductile iron check valves also offer higher pressure and temperature ratings when compared to cast iron check valves of the same class.

- **MINIMAL HEAD LOSS**
 Head loss is minimized by the integral straightening vanes that help create laminar flow. A large cross-sectional area also lessens pressure drop across the check valve. Unlike typical conical spring constructions that restrict flow, the new CV 52 has a compression spring coupled with a small stem guide that allows for an unobstructed flow path.

- **QUICK CLOSURE TO REDUCE WATER HAMMER**
 Silent shut-off is achieved via the fully automatic, spring assisted disc that closes near zero flow velocity. The lightweight, center guided disc design creates a positive shut-off prior to flow reversal and helps to keep slamming and surges to a minimum.

- **METAL-TO-METAL SEATS**
 Precision machined sealing surfaces allow the CV 52-DI to maintain a tight seal that meets or exceeds API 598 leakage requirements. Resilient seats are also available to provide bubble tight seals.*

- **VERSATILE DESIGN**
 This valve can be installed in any position (horizontal or vertical with upward flow). Certain sizes allow direct mounting of a wafer type butterfly valve to the outlet end without requiring a space flange or spool piece.

*AVAILABLE BY SPECIAL ORDER

TECHNICAL

PRESSURE/TEMPERATURE RATING (1)
- Ductile Iron - ASTM A536 - Class 300
 - WOG (Non-Shock): 640 PSI @ 100 °F

SEAT MATERIAL TEMPERATURE RANGE
- Aluminum Bronze: -460 ~ 600 °F
- Stainless Steel: -325 ~ 1500 °F

SPRING MATERIAL MAXIMUM TEMPERATURE
- Stainless Steel: 450 °F

1. The above listed temperatures are theoretical and may vary during actual operating conditions.
2. Max and min temperatures are for reference only. Prolonged use at these temperatures is not recommended for optimal service life.

MARKETS:
- Oil and Gas Production
- General Industry
- Chemical
- Petrochemical
- Power
- Food and Beverage

APPLICATIONS:
- Service: Pump discharge service in municipal water, irrigation, and industrial class HVAC systems. It is recommended that a Titan FCi strainer be installed ahead of the pump to ensure protection of the check valve and the pump.

PRECAUTIONS:
- This valve is intended for liquid service that does not exceed 10 ft/sec. It is designed for steady flow conditions and is not recommended for use in reciprocating pump, compressor or other type of physical/thermal shock-load applications. This valve is not recommended for steam service or flow media that contains solids. It should be installed at least five pipe diameters downstream from any turbulence producing components. Flow straighteners may be required in certain applications.

The above data represents common market and service applications. No representation or guarantee, expressed or implied, is given due to the numerous variations of concentrations, temperatures and flow conditions that may occur during actual service.

TITAN® FLOW CONTROL, INC.
YOUR PIPELINE TO THE FUTURE!
Tel: 910-735-0000 Fax: 910-738-3848 titan@titanfci.com www.titanfci.com
290 Corporate Drive PO Box 7408 Lumberton, NC 28358
ALL valve bodies are epoxy painted.

The CV 52-DI is designed to fit Cast Iron Class 250 and Ductile Iron Class 300 Flanges. Additional Design & Technical Notes:

1. Bill of Materials represents standard materials. Equivalent or better materials may be substituted at the manufacturer's discretion.
2. Denotes recommended spare parts.
3. Resilient Seats are available upon request. Please call for details.

PRESSURE/TEMPERATURE RATING

1. This chart displays the pressure-temperature ratings for the valve's body material per ASME B16.42-1998. Max temperature limits have been added for seat and spring materials.

ORDERING CODE

1. The listed pressure and temperature ratings for the valve's body, seat, and spring are theoretical and may vary during actual operating conditions.
2. Max and min temperatures are for reference only. Prolonged use at these temperatures is not recommended for optimal service life.