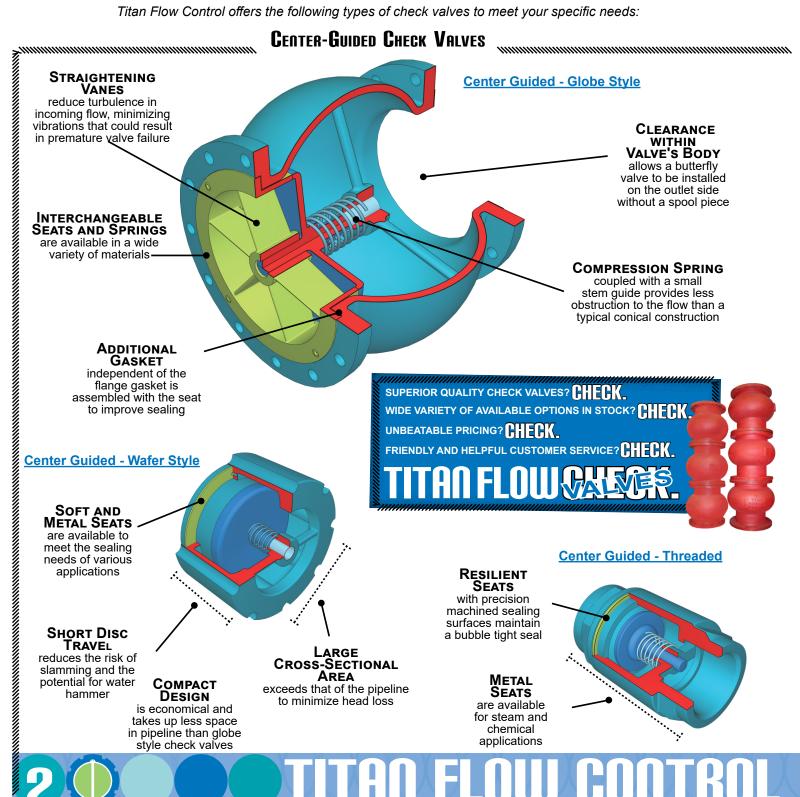


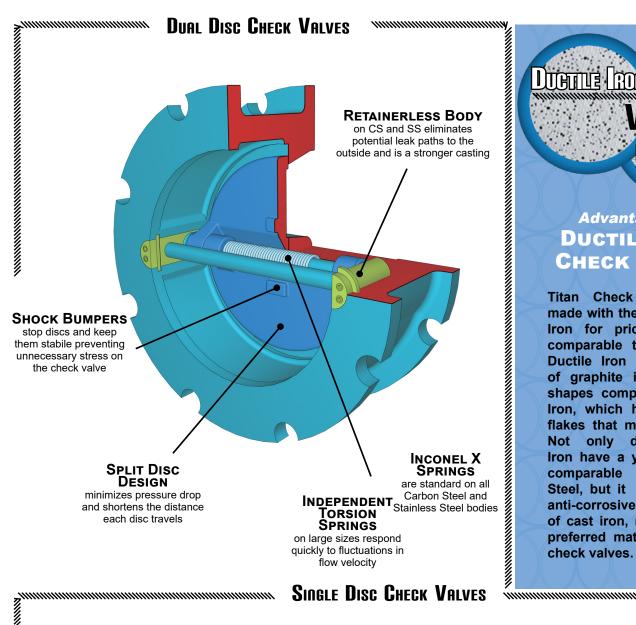
Titan Flow Control, Inc. is a high quality manufacturer of check valves. With a dedication to great customer service, cutting edge engineering, and top quality products, Titan Flow Control's Check Valves are the preferred choice for achieving automatic shut-off and preventing backflow in piping systems.

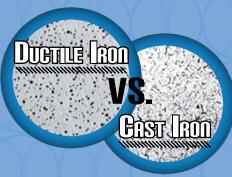
Titan is committed to maintaining a large inventory of silent check valves, center guided check valves, double disc check valves, and single disc check valves in a variety of types, sizes, materials, and pressure classes.

CALL (910) 735-0000

At Titan Flow Control, you get the right check valve and you get it right away!

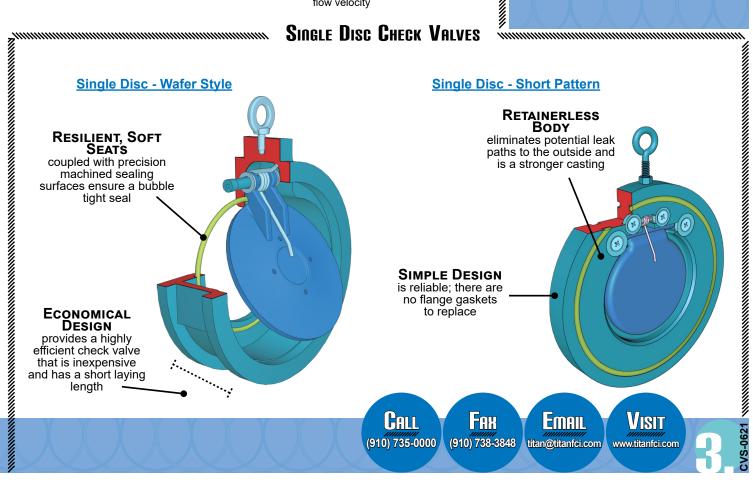

EMAIL titan@titanfci.com


TITAN CHECK VALVE FEATURES


TITAN

Check Valves are automatic shut-off valves that are commonly used for preventing backflow or drainage in a piping system. Often applied on the discharge side of pumps, check valves prevent the system from draining if the pump stops and protect against backflow, which could harm the pump or other equipment.

Titan Flow Control offers the following types of check valves to meet your specific needs:



Advantages of **DUCTILE IRON CHECK VALVES**

Titan Check Valves are made with the alloy Ductile Iron for prices that are comparable to Cast Iron! Ductile Iron is composed of graphite in spheroidal shapes compared to Cast Iron, which has lenticular flakes that make it brittle. does **Ductile** Iron have a yield strength to Carbon Steel, but it also has the anti-corrosive properties of cast iron, making it the preferred material for iron

Single Disc Check Valves

(910) 735-0000

(910) 738-3848

titan@titanfci.com

www.titanfci.com

Fax (910) 738-3848

EMAIL titan@titanfci.com

TTAN CHECK VALVES

TITAN

Double Disc Wafer Style

CV 41 - DI	Wafer	Class 150	Ductile Iron	Sizes 2" - 48"
CV 42 - CS/SS	Wafer	Class 150	Carbon or Stainless	Sizes 2" - 48"
<i></i>	mmmmmm	<i>mmmmmm</i>		
CV 42L - CS/SS	Lug	Class 150	Carbon or Stainless	Sizes 2" - 48"
CV 44 - CS/SS	Wafer	Class 300	Carbon or Stainless	Sizes 2" - 48"
<i></i>	mmmmmm.	<i>mmmmmm</i>		
CV 46 - CC/SS	Wafer	Class 600	Carbon or Stainless	Sizes 2" - 48"
CV 47 - CC/SS	Wafer	Class 900	Carbon or Stainless	Sizes 2" - 48"

Single Disc Wafer Style

CV 31 - DI	Wafer	Class 150	Ductile Iron	Sizes 2" - 12"
CV 32 - CS/SS	Wafer	Class 150	Carbon or Stainless	Sizes 2" - 12"
CV 34 - CS/SS	Wafer	Class 300	Carbon or Stainless	Sizes 2" - 12"

Single Disc Short Pattern Wafer

CV 12 - CS/SS Short Wafer Class 150

Carbon or Stainless

Sizes 2" - 24"

KEY FEATURES FOR COMPARISON

aanaanaanaanaan **aanaanaan aanaanaanaanaa**

Minimal Slam Designed

Minimal ΔP to minimize

across

valve

Designed May be used to minimize for buried head loss service; valve box only in an

recommended upward

May be used

position

Up & Down May be used in

with non-

standard

spring; C/F

higher downward than 300 position PSI are

Pressures May be used for velocities less than available 10 FPS

Short faceto-face takes up minimal space in

Relatively low initial pipeline

*Recommended guidelines, contact Titan FCI for more informatio


Single Disc Swing Check

CV 31F/WF Flanged Class 125 Cast Iron Sizes 2" - 12"

THE HOLD HAR THE THE PARTY OF T

Center Guided Globe Style

CV 50 - DI	Globe	Class 150	Ductile Iron	Sizes 2" - 36"
CV 51 - CS/SS	Globe	Class 150	Carbon or Stainless	Sizes 2" - 36"
nnnnnnnnnnnnnn	. mmmmmmm	. mmmmmmmm	. manamanamanamana	. mmmmmmmmmm
CV 52 - DI	Globe	Class 300	Ductile Iron	Sizes 2" - 36"
CV 52 - CS/SS	Globe	Class 300	Stainless Steel	Sizes 2" - 36"

Center Guided Wafer Style

CV 90 - DI	Wafer	Class 150 / 300	Ductile Iron	Sizes 2" - 12"
<i></i>	. mmmmmmm	. mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	uuuuuuuuuuu	<i></i>
CV 04 - SS	Mafor	Class 150 / 300	Stainlass Staal	Sizos 2" 12"

As part of Titan Flow Control's dedication to cutting edge design, Titan's Engineering Department developed the patented CV 50 series of center guided, globe style, check valves. Only Titan's CV 50 series have integral straightening vanes to calm turbulent flows, smaller stem guides for less flow obstruction, and extra clearance to allow direct butterfly valve installation on the outlet side.

Center Guided Threaded & Insert

	CV 20 - BR	Threaded	WOG	Bronze	Sizes 1/4" - 2"
	mmmmmmmmm	mmmmmmm	mmmmmmmmmm	mmmmmmmm	munumunum
	CV 80 - SS	Threaded	Class 300	Stainless Steel	Sizes 3/8" - 3"
	<i></i>	mmmmmmm	<i></i>		ишишишиши
NEW	CV 71 - SS	Insert Wafer	Class 150/300	Stainless Steel	Sizes 1/2" - 6"
NEW	CV 88 - SS	Threaded Socket Weld	Class 300	Stainless Steel	Sizes 1/2" - 3"

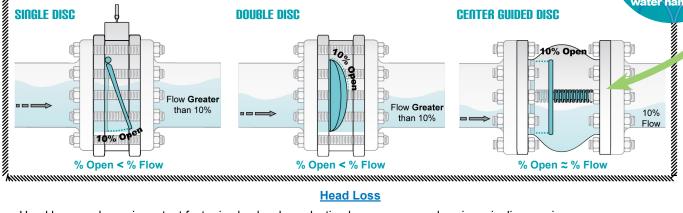
TECHNICAL INFORMATION

Design Specifications

The following specifications are referenced in the design of Titan Flow Control, Inc's Check Valves. Please contact a Titan Engineer with any questions about design requirements or specifications.

API 594	General Valve Design
API 598	Valve Pressure Testing and Inspection
API 6A	Production Valves
API 6D	Pipeline Valves
ASME B16.1	Cast Iron Pipe Flanges & Flanged Fittings
ASME B16.5	Pipe Flanges and Flanged Fittings
ASME B16.10	Face-to-Face & End-to-End Dimensions
ASME B16.24	Cast Copper Alloy Pipe Flanges

ASME B16.34	Flanged, Threaded, and Welding Ends
ASME B16.42	Ductile Iron Pipe Flanges
ASME B16.47	Large Diameter Steel Flanges
ASME B31.1	Power Piping
ASTM	Material Specifications
MSS SP-6	Finishes for Connecting End Flanges
MSS SP-25	Standard Marking System for Valves
MSS SP-55	Quality Standard for Valve Castings


FACTORS FOR CONSIDERATION

Water Hammer

The term water hammer refers to a pressure surge in a pipeline that is created when a closing check valve stops reverse flow suddenly. This surge causes a slamming sound and it potentially can damage pipelines and buildings that house the pipelines, especially when the fluid has a high velocity or mass or when the pipeline's elevation fluctuates greatly.

Because quick closure is the key to the prevention of water hammer, it is important to consider the speed at which the check valve will close and the distance it has to travel to close. Features like Titan's independent torsion springs on large double disk check valves allow the valves to respond quickly to fluctuations in pipeline flow. As illustrated below, because a center guided check valve that is almost closed will only have a small amount $olimits_{\mathcal{O}}$ of reverse flow, water hammer is less likely in any specific application. Conversely, a single disc or double disc check valve's flow rate may be greater than its percentage open, meaning that more reverse flow is present. Consult Titan with any concerns or questions about water hammer before selecting a check valve.

because they are less likely to SLAM as a result of water hammer

Head loss can be an important factor in check valve selection because energy loss in a pipeline can increase expenses significantly over time in certain applications. The main design features that affect head loss are the internal shape of the body and obstructions to the flow. Titan's Check Valves are designed with the following features to minimize head loss:

- Large cross-sectional area of center-guided check valves exceed that of the adjacent pipeline
- Specially contoured bodies on globe check valves are designed to allow a smooth flow across the valve
- Short, straight flow paths on double and single disk check valves prevent unnecessary head loss
- Compression springs with a small boss obstruct flow less than typical conical constructions by other manufacturer's
- Low cracking pressure on single and double disc check valves minimally slows the pipeline flow

RESILIENT / SOFT SEAT OPTIONS

BUNA-N Max Temp: 250 °F

Buna-N is the most widely used elastomer. It works well for most petroleum oils and fluids, silicone greases and oils, and cold water. It also has an excellent compression set, tear, and abrasion resistance, but has poor weather resistance and moderate heat resistance. Buna-N is not recommended for ozone-resistant applications.

All Titan Check Valves meet or exceed **API 598**

Valve Inspection &Testing Standards

PTFE (TEFLON) Max Temp: 425 °F

PTFE works well in most chemical environments. It has excellent tear, abrasive, chemical, acid, and alkali resistance. PTFE is not recommended for high pressure steam or large temperature variations.

VITON Max Temp: 400 °F

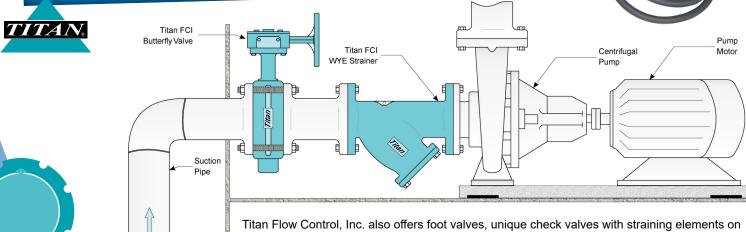
Viton offers a broad range of chemical resistance and excellent heat resistance. Viton has good mechanical properties and compression set resistance, fair low temperature resistance, and limited hot-water resistance and shrinkage. Viton seats are often used in applications where nothing else will work.

EPDM Max Temp: 300 °F

EPDM is likely the most water resistant rubber available. EPDM has good resistance to mild acids, alkalis, ketones, alcohols, and other polar solvents; however, it is not recommended for use with petroleum oils, di-ester lubricants, mineral oils, nonpolar solvents, or aromatic fuels.

NEOPRENE Max Temp: 250 °F

Neoprene is a durable & versatile synthetic rubber that was developed as an oil-resistant replacement for natural rubber. It is also resistant to the effects of moderate chemicals and acids, ozone, fats, greases, and solvents. It displays good chemical stability and is moderately resistant to heat. Neoprene is not recommended for use with strong oxidizing acids, esters, ketones, or chlorinated, aromatic and nitro hydrocarbons oils, non-polar solvents, or aromatic fuels.



Titan FCI

Foot Valve

\∧\e

\∧⁄eII

the check valves' inlet sides. Check Valve Series 20, 80, and 50 are all available as foot valves.

In a piping situation as pictured here, a check valve closes when the flow stops, preventing a pump from losing its prime and enabling the pump to function properly as flow returns and the check valve re-opens.

PROTECT YOUR EQUIPMENT! Because foot valves have built in strainers, the pump and other pipeline components are protected from debris that may cause damage.

Contact the Titan factory for more information and options available for Titan Foot Valves.

LALL (910) 735-0000 (910) 738-3848

EMAIL titan@titanfci.com

FAH (910) 738-3848

EMAIL mmmmm titan@titanfci.com

TITAN ORDERING CODES

TITAN

Below are the typical ordering constructions for Titan Flow Control, Inc.'s **Dual Disc Check Valves**, **Center Guided Check Valves**, **and Single Disc Check Valves**. Please call Titan Flow Control or your nearest sales representative with any questions about Titan Check Valves related to ordering, availability, etc.

Dual Disc Check Valves

SERIES BODY DISC SHAFT SEAT SPRING CV 42 - CS - S - S - 1 - X

Dual Disc Wafer Type Check Valve (Class 150),

Carbon Steel Body, Stainless Steel Disc, Stainless

Steel Shaft, Buna Seat, and Inconel-X Spring

SERIES CV 41 (ASME 150) CV 42 (ASME 150) CV 42L (ASME 150) CV 44 (ASME 300 CV 46 (ASME 600) CV 47 (ASME 900) **Body DI** (Ductile Iron) CS (Carbon Steel) SS (Stainless Steel) S (Stainless Steel) **B** (Aluminum Bronze) S (Stainless Steel) SHAFT SEAT 3 (Viton) 1 (Buna-N) 5 (Neoprene) 4 (PTFE/Teflon) **2** (EPDM) 6 (Metal to Metal, Stainless Steel)

R (Inconel)

X (Inconel-X)

Center Guided and Single Disc Valves

SERIES BODY DISC SERT CV 91 - SS - S - 3

DESCRIPTION Wafer Type, Center Guided, Check Valve (Class 150/300) Stainless Steel Body, Stainless Steel Disc, Viton Seat

CV 12 (ASME 150) CV 20 (WOG 400) CV 90 (150 / 300) CV 91 (150 / 300) CV 32 (ASME 150) CV 51 (ASME 150) CV 52 (ASME 300) CV 50 (ASME 150) CV 34 (ASME 300) CV 80 (ASME 300) CV 31 (ASME 150) CV 71 (150 / 300) DI (Ductile Iron) CS (Carbon Steel) SS (Stainless Steel) **B** (Bronze) Bony S (Stainless Steel) **B** (Aluminum Bronze) Disc 4 (PTFE/Teflon) **1** (Buna-N) **2** (EPDM) 3 (Viton) SEAT **S** (Metal to Metal, Stainless Steel)

Find a Titan
SALES REPRESENTATIVE
NEAR YOU: (910) 735-0000

Managara da Maria da

Spring S (Stainless Steel)

TITAN FLOW CONTROL