TECHNICAL AND PERFORMANCE DATA

PRESSURE DROP CHARTS WYE & BASKET STRAINERS

WYE Strainers - Small Models
Models: YS12 - YS52 - YS55 - YS56 - YS81 - YS82

WYE Strainers - Large Models

WYE Strainers - High Pressure - Class 900 & 1500

WYE Strainers - High Pressure - Class 2500
Models: YS70 - YS71 - YS85 - YS86

Legend: Pressure Drop - PSI (y-axis) versus Flow Rate - GPM (x-axis)

WYE Strainers - Small Models

WYE Strainers - Large Models

WYE Strainers - High Pressure - Class 900 & 1500

WYE Strainers - High Pressure - Class 2500

Pressure Drop Equation for Liquids:

\[
\Delta P = G \times \left(\frac{Q}{Cv} \right)^2 \times Cr
\]

- \(\Delta P \) = Pressure drop (psi)
- \(G \) = Specific gravity of liquid
- \(Q \) = Flow rate (GPM)
- \(Cv \) = Flow coefficient factor
- \(Cr \) = Correction factor for mesh and viscosity

- These curves are theoretical; actual results may vary depending on installation conditions and other variables. Use these values for reference only.
- The above pressure drop charts are based upon 1/8" perforated screens and baskets handling clean water at 60 °F during ideal inlet and outlet conditions. Therefore, they should only be used for estimation purposes.
- For fluids other than water, multiply the pressure drop (\(\Delta P \)) obtained from the charts by the specific gravity of the fluid in question.
- For mesh lined screens, multiply the pressure drop (\(\Delta P \)) obtained from the charts by the corresponding correction factor shown in the \(Cv \) correction table.

TITAN FLOW CONTROL, INC.
Tel: 910-735-0000 Fax: 910-738-3848 titan@titanfci.com www.titanfci.com
290 Corporate Drive PO Box 7408 Lumberton, NC 28358
TITAN FLOW CONTROL, INC.

TECHNICAL AND PERFORMANCE DATA
PRESSURE DROP CHARTS ♦ WYE & BASKET STRAINERS

Basket Strainers - Threaded Ends & Flanged Ends
Models: BS25 - BS25F - BS35 - BS35F

Basket Strainers - Flanged Ends
Models: BS55 - BS65 - BS85 - BS86 - BS95 - BS89

Cv CORRECTION FACTOR TABLE

<table>
<thead>
<tr>
<th>Centistokes (SSU)</th>
<th>Perf. (Unlined)</th>
<th>Mesh 20 MESH</th>
<th>Mesh 40 MESH</th>
<th>Mesh 60 MESH</th>
<th>Mesh 80 MESH</th>
<th>Mesh 100 MESH</th>
<th>Mesh 120 MESH</th>
<th>Mesh 150 MESH</th>
<th>Mesh 200 MESH</th>
<th>Mesh 300 MESH</th>
<th>Mesh 25 Micron</th>
<th>Mesh 10 Micron</th>
<th>Mesh 5 Micron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30 (Water)</td>
<td>1.00</td>
<td>1.05</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.35</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>1.1</td>
<td>1.15</td>
<td>1.4</td>
<td>1.5</td>
<td>1.7</td>
<td>1.8</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.55</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>1.2</td>
<td>1.25</td>
<td>1.5</td>
<td>1.6</td>
<td>---</td>
<td>2.1</td>
<td>2.35</td>
<td>2.45</td>
<td>2.6</td>
<td>2.75</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>1.3</td>
<td>1.35</td>
<td>1.6</td>
<td>1.7</td>
<td>2</td>
<td>2.2</td>
<td>2.45</td>
<td>2.85</td>
<td>3</td>
<td>3.15</td>
<td>---</td>
<td>4.0</td>
</tr>
<tr>
<td>43</td>
<td>200</td>
<td>1.4</td>
<td>1.45</td>
<td>1.7</td>
<td>1.8</td>
<td>2.1</td>
<td>2.3</td>
<td>2.55</td>
<td>3.0</td>
<td>3.2</td>
<td>3.35</td>
<td>4.0</td>
<td>---</td>
</tr>
<tr>
<td>54</td>
<td>250</td>
<td>1.45</td>
<td>1.5</td>
<td>1.75</td>
<td>1.85</td>
<td>2.2</td>
<td>2.35</td>
<td>2.65</td>
<td>3.1</td>
<td>3.3</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>76</td>
<td>350</td>
<td>1.5</td>
<td>1.6</td>
<td>1.8</td>
<td>1.9</td>
<td>2.3</td>
<td>2.45</td>
<td>2.75</td>
<td>3.2</td>
<td>3.4</td>
<td>3.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>1.6</td>
<td>1.7</td>
<td>1.9</td>
<td>2.1</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.35</td>
<td>3.6</td>
<td>3.75</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>162</td>
<td>750</td>
<td>1.65</td>
<td>1.9</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>2.9</td>
<td>3.5</td>
<td>3.7</td>
<td>3.9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>216</td>
<td>1000</td>
<td>1.7</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.6</td>
<td>3.8</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>325</td>
<td>1500</td>
<td>1.8</td>
<td>2.1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.75</td>
<td>3</td>
<td>3.2</td>
<td>3.8</td>
<td>4.1</td>
<td>4.3</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>433</td>
<td>2000</td>
<td>1.9</td>
<td>2.2</td>
<td>2.4</td>
<td>2.7</td>
<td>2.9</td>
<td>3.2</td>
<td>3.4</td>
<td>4.05</td>
<td>4.6</td>
<td>5.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>650</td>
<td>3000</td>
<td>2.0</td>
<td>2.3</td>
<td>2.6</td>
<td>2.9</td>
<td>3.5</td>
<td>3.5</td>
<td>3.8</td>
<td>4.6</td>
<td>5.0</td>
<td>5.2</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>866</td>
<td>4000</td>
<td>2.1</td>
<td>2.45</td>
<td>2.8</td>
<td>3.15</td>
<td>3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.9</td>
<td>4.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1083</td>
<td>5000</td>
<td>2.2</td>
<td>2.6</td>
<td>3</td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
<td>4.6</td>
<td>5</td>
<td>5.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1624</td>
<td>7500</td>
<td>2.35</td>
<td>2.8</td>
<td>3.4</td>
<td>3.8</td>
<td>4.3</td>
<td>4.75</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2200</td>
<td>10000</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3000</td>
<td>13500</td>
<td>3.0</td>
<td>3.5</td>
<td>---</td>
</tr>
<tr>
<td>5000</td>
<td>22500</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
<td>7.5</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.5</td>
<td>10.0</td>
</tr>
<tr>
<td>6000</td>
<td>27300</td>
<td>4.2</td>
<td>---</td>
</tr>
<tr>
<td>15000</td>
<td>67000</td>
<td>6.0</td>
<td>6.5</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.5</td>
<td>10.0</td>
<td>10.5</td>
<td>11.0</td>
<td>11.5</td>
</tr>
<tr>
<td>18900</td>
<td>86000</td>
<td>8.0</td>
<td>8.5</td>
<td>---</td>
</tr>
<tr>
<td>20000</td>
<td>89300</td>
<td>8.5</td>
<td>9.0</td>
<td>---</td>
</tr>
</tbody>
</table>

Multiply the Correction Factor by the pressure drop obtained from the charts in order to calculate \(\Delta P \) for other liquids (besides water) and mesh lined screens and baskets.

Pressure Drop Equation for Liquids:

\[
\Delta P = G \times \left(\frac{Q}{Cv} \right)^2 \times Cr
\]

\(\Delta P = \text{Pressure drop (psi)} \)
\(G = \text{Specific gravity of liquid} \)
\(Q = \text{Flow rate (GPM)} \)
\(Cv = \text{Flow coefficient factor} \)
\(Cr = \text{Correction factor for mesh and viscosity} \)

- These curves are theoretical; actual results may vary depending on installation conditions and other variables. Use these values for reference only.
- The above pressure drop charts are based upon 1/8" perforated screens and baskets handling clean water at 60 °F during ideal inlet and outlet conditions. Therefore, they should only be used for estimation purposes.
- For fluids other than water, multiply the pressure drop (\(\Delta P \)) obtained from the charts by the specific gravity of the fluid in question.
- For mesh lined screens, multiply the pressure drop (\(\Delta P \)) obtained from the charts by the corresponding correction factor shown in the Cv correction table.

TITAN FLOW CONTROL, INC.
Tel: 910-735-0000 Fax: 910-738-3848 titan@titanfci.com www.titanfci.com
290 Corporate Drive PO Box 7408 Lumberton, NC 28358